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ABSTRACT

Under the rather general conditions it is possible to represent a

4-port by means of an ideal directional-coupler together with certain 2-ports

in each of its lines. Such a representation is called the " canonical-form"

of the given 4-port.

The canonical-form of two tandem-connected 4-ports and the coupling

coefficient of the associated ideal directional coupler are determined.

The presentation is of a theoretical nature.
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Introduction and Summary

An early result by Kyhl [Ref. 2] demonstrated that any "non-degenerate"

lossless, reciprocal 4-port may be represented as an ideal directional coupler with

certain lossless, reciprocal 2-ports in each of its lines. Such a form will be

referred to as the " canonical form" of the given 4-port. Further work by

Kahn and Kyhl [Ref. 1] yielded formulae which expressed the parameters of the

associated ideal directional coupler and the appropriate 2-ports in terms of the

characteristics of the given 4-port.

The transfer-scattering formalism was adopted because the cascading

of ZN-ports is equivalent to the multiplication of the corresponding transfer

matrices.

It will develop that the question of whether or not the determinants of

certain submatrices of the transfer-scattering matrix are real numbers is of

fundamental importance. Kahn and Kyhl imply their reality by assuming the

existance of the canonical form. Herein a proof of their reality is given based

solely on the restrictions of losslessness and reciprocity.

The transfer matrix of an ideal directional coupler can be of only three

possible forms corresponding to any permutation of port designations. This

report centers on the problem of determining the canonical form of two tandem

connectea 4-ports in terms of the parameters of the canonical forms of each

of them. Nine cases were considered which exhaust all possibilities.

The results of this endeavor are presented in table III. It is noteworthy

that the form of ideal directional coupler associated with two type three couplers

is always a type three.

(i) Some Definitions and Notations

Throughout this work certain matrices and products of these matrices

recur with sufficient frequency to justify the construction of a table of matrix

products and other pertinent information.

There are essentially three such matrices:
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01'Ij [-2] p
1 0]

1o
10 -1

The table of interest appears below.

K K- K K2 K +  det K

P P I P-

P - P -I _1

(ii) Some Matrix Conventions

1.v r eof a matrix A. will be denoted by A-a ) The ives

b) If A is the Nx N matrix

All ..." AIN

ANI .. A NN

N
the trace of A is Tr A : Aii

c) IfA is an N x N matrix, the transpose of A is the N x N
matrix A t formed by letting the i th column of A be the i t h row
of A.

d) If Z re r j e is a complex scaler, the complex conjugate of Z is

denoted by Z * and Z* r-je

--~ r£
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e) If A is an N x N matrix the matrixK [2" 'NJA l i .. A, I N

A N A ANN

will be denoted by A

t * +
f) The matrix (A ) will be denoted by A

g) The N x N matrix with ones along its principal

diagonal and zeros everywhere else will be denoted by

I. 1 0 ... 0

0 1 0

0 . .

0 0 ... 1
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(i) Definition of an N-port

In this study we shall assume that all voltages and currents are of constant

frequency and that the frequency is "high enough" so that a " transmission line

approach" becomes convenient.

An N-port is a structureaccess to which is gained by means of N trans-

mission lines. On each line we shall assume a position is available at which it

is possible to measure a current and a voltage. There are N such places

available in an N-port and each such position will be called a port.

(ii) Impedance Representation of an N-port

On the kth line the voltage and currentswhose reference directions are as.

shown4are related by the following pair of first order equations:

.k
Vw k

dJ

d --

k N

k = 1, ... , N

where Vk(x) and i(x) are the voltage and current measured at the point x on the

ktL- line; yk is the propagation constant of the k- line and zk = i is the

(real positive) characteristic impedance of the k th line.

It will be useful to define a new set of so-called 'normalized" voltages

and currents vk and i k . respectively by
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0 0 V

IlIo

0 0 "N VN

and

to, &tb

/=7=
(3)

* 0 0k 'k~'

In particular the et of normalized voltages and currents are related

to the old set by



If the new set is substituted into (1) there results

- .. k(x) J -i, '(x)'

- d

"-x " k k(X) = k ik(x)

which is equivalent to saying that the ktL- line has a characteristic impedance of

unity corresponding to vk and ik. It is convenient to deal exclusively with the

normalized quantities vk and ik because every N-port having lines of characteristic

impedance i. corresponding to ik and k can be transformed into one having

characteristic impedance of unity and terminal quantities vk and k. The converse

is also true.

The normalized impedance representation is

V Z 11 ZlN i

I = (6)

vN ZNl ZNN

where
Vk -k = 1, ... , N

f* l...,N (7)

withir=0 m= l, ... N, m/

Although we shall not be concerned with the impedance representation

as such, its presentation complements the "sr tering" representation next to
be discussed.
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(Iii) Scattering Representation

The normalized scattering parameters ak and bk associated with the

kth line are defined by

-- (k (x) + 'k (x1)- ak (x)
(8)

1 vk (x) - 'k (x) b= k (x)

k= 1, ... , N

Using these relations, (5) is transformed into

d
a- k (x) : -J 'k ak (x)

(9)
=x bk (x) = -yk b k (x)

k = , ... , N,

whose solutions are

ak(x) = ak( o ) - ' k x

bk (x) = bk (0)J Ykx (10)

k= 1,..., N

The quantities ak (x) and bk (x) represent amplitudes associated with

wave motion in the x and -x directions respectively, at the point whose

coordinate is x on the kt-h line. Treating the quantities ak as independent

parameters and the quantities bk as dependent we can write

b All ... AIN a1

b N A(11)

bN ANl ... AN a N
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where
bJ = 1...., N

ij a j =Is es. ,N

ak = O k I, ... , Np k j

The utility of the scattering matrix representation resides in the concise

expressions which result in scattering terms when constraints imposed by

losslessness and lorentz reciprocity, among others, are imposed.

We now state without proof two fundamental results:

"Conservation of energy and Lorentz Reciprocitry respectively imply

SS I and S = S. (12)

where S is the N x N matrix

sij AIN

A NI A NN

(iv) Partitioned Matrices

It will be found convenient to partition a matrix into submatrices and to

consider it as a matrix whose elements themselves are submatrices.

For example the 4 x 4 matrix T

tlIl tI12 t 13 t 14

t21 t22 t2 3  t24

t3 1 t32  t3 3  t34  (13)

t4 1 t42  t4 3  t44

may be partitioned into

T: T(4

T ~ T 4
T21 T22



where

T 11t1 t12z

We shall denote a partitioned matrix by the horizontal and verticle lines as

shown by (14). Let U be the matrix

Ull1 UlZ u13 u114

u 2 1 u 2 2  u 2 3 u24

U u31 u32 '33 u34 (15)

u41 u42 u43 u 4 4

an, let it be partitioned

U 11 (16)

U2 1  U2 2

where

U = ] , .. (17)
u 2 1  u 22

Then the product of partitioned matrices

T1II1 12 11 U 2 T I U II1  T 12 U 2 1  T 1 1 U 1 2 +T 1 2 U 2 2
TU = ________

T 2 1  T 22  U 2 1  U 22  T 21 U 11 + T 2 2 U2 1  T 21 U 12 + T 2 2 U 22
when expanded, is equivalent to the product TU when T is of form (13) and U of

form (15).
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(V) Transfer - Scattering Representation

The (normalized) transfer-scattering matrix or simply the transfer matrix

of an N-port arises as an outgrowth of the basic scattering concept. It affords

a natural way of providing a scattering description of n tandem connected

2 N-porits because the process of connecting Z N-ports in tandem is equivalent

to multiplication of the representative transfer matrices of each Z N-port.

Let Abe a 2 N-port and suppose each port is assigned a number from
1 to ZN. Further suppose that the ZN-ports are grouped into two sets of N
ports such that ports 1 to N will be called inputs; ports N + 1 to 2N will be
called outputs. Then a transfer matrix of the ZN-port is the ZN x ZN matrix
(tij) defined by

a
!bN+l 1.1 ' Zl N 1l

aN+1 . b

bN +2 a2

a h(18)
aN+2 b 2

bzN ZN, 1,,. tN, 2N aN

A ZN bN

Clearly the essence of the transfer matrix point of view is that it treats
the 2N terminal quantities ak , bk of N selected ports called the input as
independent variables while the remaining 2N terminal quantities associated with
the N output ports are dependent variables. It follows that another possible
transfer matrix of A is
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bN+1 U11 •. 1, 2N a1

b ZN aN

aN+ 1 1

2 U2N, 1 ... u2N, ZN
Sa2N - bN

However we shall deal exclusively with the transfer matrix defined by (18)

Consider two ZN-ports A and connected in tandem as shown
1 A12

I- N+I I - N+I

K N+K K N+ K

• N 2N I. N 2N .

Ih

and in particular let us study in detail the connection of the (N + k)th port of A

to the kth port of A2  An was defined earlier the reference directions at the

(N + kth port of A 1 and th kt- port of A. ire schematicay

()  1 i(l)
k N+k

+ +

V(2) O
!_ -N+k

X --I*X - AXIS

where the superscripts 1 and 2 refer respectively to A1 and A.
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This implies

iN+k (x) k- ik(x)
(20)

VN+k (x) - k (X)

Now from (8)

N+k (x) V N+k (x) + iN+k (x)

(21)
b( 1 ) (x)N+k (VN+k (x) - iN+k (x)

and
ak (x) = (vk jx) + ik(x) (22)

(2)2

b 2 ) (x) (vk (x) - ' (x))

When (20) is substituted into (21) and (22) we find

a(') (x) b(2)(x)N+kk
(23)

b (1) .)= - (x
N+k i(X

Suppose T 1 and T. are the transfer matrices of A1 and A2 respectively. Then

1 1
bN+ a

aN+1 1

(24)T1

2N

Ia2N N

1
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and

b2 a2
bN+1 a1

a bZaN+1

T T2  (25)

b2 a2
b2N aN

22a 2 N N b

But (23) implies

b 1 a2
N+1 a1

a I1 2
N+1 1

(26)

ZN aN

2ZN bN

b2 1l
bN+I a

2
a N+1 b1

T T 2 T 1  (27)

b2 '
2zN a N

2ZN N
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It follows that if n 2N-ports are connected in tandem then

"b" n a I-

N+l a 1

ai 1aN+l 1

T. T (28)

an 1

ZN N

We shall now consider a special class of 2N-ports namely the set of

all four - ports.

3 tl •. t 14  a 1

a 3  b I

4b = a 2  (29)

a 4  t 4 1  t44 b 2

Suppose the scattering representation

b I i a -. s14 a1

b2  a 2

b 3  a 3  (30)

b 4 s841 s44 a 4

is given. It will be useful to determine the parameters tij in terms of the

parameters s... From (30) it follows that

3 31 s32 s33 34 1 1 1 0 0 0 a 1

a3  0 0 1 0 a 2  b I S 1 1 3 b 14  a 2

a2
b 4  8 s41 s 42 s 43 s 44 a 3 a 3  ($1) a

a 4 /0 0 0 1 J L a 4 b 2z s 2 2 z 3 a 4 - a 4
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and

b3  '31 '32 533 534 1 0 0 0 a 1

a3  0 0 1 0 il 12 13 14 b 1'33z

b4  s41 s42 s43 a44 0 1 0 0 a2
a4  0 0 0 1 021 '22 s23 '24 b 2

(Vi) Directional Couplers

An "ideal directional coupler" henceforth abbreviated by I. D. C. is a

lossless, reciprocal four - port, the scattering matrix of which has zeros along

the main diagonal when each port is terminated in the characteristic impedance of
the corresponding transmission line.

From (18) the transfer representation of a four - port is

+S31 s13 S24 +S33 S24 +S3 2 S13 S24 -S 3 3 S 14

-S 3 1 s14 s23 "S34 s23 I S32 S14 S23 +S34 S1 3

"$11 533 $24 "$12 $ 33 $24

+SI 534 S23 +S12 S3 4 $23

+521 $33 $14 I +522 533 S14

($21 $34 S s 1 _$22 S 34 S13

-S24 sil +Sz4 [ -24 S12 -s4

+s 14 s21 +514 Szz

Tm _-

s 1 3 S2 4 "S14 S2 3  +$41 $13 $24 +S4 3 $24 I +42 S13 s 2 4  -43 S14

"$41 S14 $23 "S44 $23 "42 S14 S23 +S4 4 S 1 3

+SII S43 SZ4 + "12 $43 $24

+$11 $44 Z3 1 +S1 $44 $23

+$21 $43 $14 I +$22 $43 514

"$21 S4 4 $13 I -S22 S44 S13

+623 Sll "S23 +$23 S 1 2  Si1

-$13 $21 I -13 $22
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To each numbering of the ports of a device which is an I. D. C. there

corresponds a form of scattering matrix. Since there are twenty-four ways

of numbering the four ports there are twenty-four possible "forms" of

scattering matrix associated with a given I. D. C. We shall say a "form" of

scattering matrix is defined by the distribution of zeros in the matrix. If the

twenty-four possible forms of scattering matrix associated with an I. D. C. are

written and compared there appear to be only three different forms. The

scattering matrix of an I. D. C. must assume one of the three following forms:

00 a jP a 0 PC
S1 = 0 jP $LS2 =L 0 jP 0$S3 = jP 0 0 a (34)

jP 0 0 jP0-- 0 0 a
J 0 0 , 0 a , 0 j0

where a and P are positive real numbers and

a + P (35)

Note that forms 1 and 2 collapse intoI0 00 j
0 0 j 0

L j 0 l (36)

j 0 0 0

for a = 0 and forms 1 and 3 collapse into

0 0 1 0

0 0 0 1

1 K u 0  (37)
0 1 0 0

when a = I

Corresponding to each form of scattering matrix there is a transfer matrix
which similarly assumes one of the three forms:

7a 0 0-

T= 0 0 -jP (38)
IJP 0 Ia 01
L0 _jPo 0 ]
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J j+ 0 j

L2 +L 0a

-0 a 0

T 
2

P0 -0 0

Whe pattoe aporal ths0omsbc

T 1 = T2 = IT 3 =4 (39)a13' 0 0 ja
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(i) A Proof That the Determinant of a Partitioned Submatrix of T is Real.

We shall now derive a result which will be of fundamental importance in

our later work. If the matrix T in (29) is partitioned naturally into four 2 x 2

submatrices as shown, then the determinants of these submatrices are real.

This we now prove.

A direct computation shows that

detT T 24 $31 S$21 $34

S13 S24 "S14 $23

ST S 13 $42 -S12 $4 3
det T2 2 =-_

S13 Sz4 "S14 S2 3

de 1 2S 2S3 (40)
' $14 $32 "SlZ $34

1e ST14 S 23 "S13 S 24

det T 2 1  S23 S 4 1  S21 43

S2 3 S14 "S24 S13

Invoking the principle of reciprocity, it can be seen at once that

(a) det T 1 1 = det T 2

(b) det T1 2  det T2 1  (41)

and (c) 1.. det T 11 = det T 12

From (12) we find

IS S1 S1 S1 S* 1 0 0

11 12 1 14 11 $ S3 1 S4 1  1000

S21 S2z gz3 S24 12 S2z Sz S 0 1 0 0 (42)

S S S S * S* S* S* 0-
S31 32 $33 S34 S13 23 33 43

L S41 42 43 43 14 S24 34 44 0 0 0 1
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By multiplying appropriately, the following expressions can be obtained:

S 3 S S2 S*12 + S23 S13 + S4 S = 0 (43)

31 23 ( S 1  + 22 12 2 13 244

S2 1 S? (S31 Sl + S32 S1 + S3 3 S13 + S3 4 S 1 ) = 0 (44)

$ S (S3 1 S2 1 + $32 $22 + $33 S + S3 4 S2 4 ) 0 (45)

where the factor outside the bracket has been added as a guide to subsequent

manipulation, and also

SZ3 1 I $31+ + S13 $3 3 + S14 $34) =0 (46)

S13 S21 (S 2 1 $31 + S22 S32 + Z3 $33 + S2 4  34) 0 (47)

Z3 S31 (Sl1 SZ 1 + SIZ S22 + S13 S23 + S14 $2 4 ) =0 (48)

The set of equations (43) to (45) can be put in the following form:

I21 S 23 534 S14 2 S24 S14 S31 S23 " S21 S13 $34 Z4 (49)

S S* S * * * *
$Z2 S12 $31 S23 + S31 $23 $23 S13 - S21 S23 S3Z S12

+ Sl S S + S S S

+ 21 13 31 2Z1 + 21 13 S32 22

and similarly the set (46) to (48) yield

S23 S14 $21 $34 2 S24 S1 3 Sz $34 2 S23 S14 24 31

S3 S * SI S * + S S * S $1 + S S * S S *
- 23 21 12 2Z2 + 12 21 21 S3 1 + 13 21 ~2Z '32

+ S S *S S + S):S SZ3 31 12 22 23 $31 S13 $23

Due to the reciprocity condition it is apparent that

S S * S * S S * S CS * - * S(1
S21 S23 $34 S14 2 SZ4 S14 $31 S23 " 21 13 $34 SZ4 (51)

S S S * -S 4 S S - S3 S14 *4 $3123 14 21 34 Z4 13 21 034 Z 4S4S*
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Now
S°* * * , , *

21 2 3 S3 4 S 14  - S2 4 S 14 $31 23 - 21 1 2 4 $24

(24 s31 - s s34) 4 - s 2 3 s 4 ) - s 2 4  (315

and

S S S* * * * S *
$23 S14 $ 2 1 $ 3 4  - $24 S1 3 S2 1 S3 4 - S 2 3 S 14 $2 4 $31

(S 24 s31 - S2 3 s14) (s24 S31 - 21 s34) - ]24 s 3 1 2 (53)

Therefore from (52) and (53)

($24 $31 - S2 1 $34) (24 - 23 14)

, , , * (54)
- (S24 S13 - S23 S14) (S24 S 3 1 - S21 S34)

and finally

S S S S S S S S S S -

(55) 24 31 - S21 S3 4  24 31 21 $34 2 4  31 2 1 S 3 4
S S S SS K * * * S

s24 S13 - s22 s14 s24 s 13 - s23 s 14  s24 s 13 - 2 2 S14

or

det Tll is real.

From this and equation (4b), it follows immediately that det T 2 2 is real.

As a consequence of (41)

(det T 2) = (1- detT) = 1- (det T 1 1 )

= 1 - dee T 1 1  (56)

= det T 12

and det T 1 2 and det T 2 1 are also real.
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(ii) "Canonical Form" of a Four-Port

Under rather general conditions it is possible to represent a four-

port by means of an I. D. C. with a certain two-port in each of its lines: it is

necessary that the given four-port be linear, lossless and reciprocal, and not

belong to a set.of degenerate structures which will be defined later. In what

follows we shall assume, unless otherwise stated, that a "given arbitrary four-

port" will satisfy the conditions stated above, and hence can be represented as

described.

Let us first consider the transfer matrix of an I. D. C. with a

lossless, reciprocal two-port in each line. Assume that the transfer matrix of

each two -port is non - singular.

A, B, C, D, denote the transfer matrices of each of the two-ports and t denotes

the partitioned transfer matrix of an I. D.C.

The transfer matrix we are seeking is given by

T = T2 t T 1  (57)

where D A 1 0

L0 B t ] Tz C (58)

or

TtI D A t 12 B

tz I D C t 2 2 B

We will now try to define the matrices A, B, C, D, tll, t 1 Z, t2 1,

so that T will be equal to the transfer matrix of a given arbitrary four-port.

T T At D At 2 B

]- (59)
r21 T 22[ t 21 D C t22 B
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For our purposes one two-port, say A, can be chosen initially

in an arbitrary manner We find

A= X
-1

B (t X T

= T2 2 (T,2)-1 Xt 12 (t 22-1 (60)

D = (tll)I X " I TI1

where X is arbitrary•

The subXatrces t. , i = 1, 2, j = 1, 2, are as yet unknown.

From a consideration of equations (39) it is apparent that for

< (61)

form 
1

0 = det t 1 2 Z 1

o < det t I 0

form 2
1 dett 1 2 < OD

1 c det t < cO

form 3
-0 < det t 1 2  0

and
det tl1 = det t 1- det t12

(62)
det tl1 = det t21

The values that det t., can assume for a fixed i and j is the real line
'3

and furthermore the real line may be partitioned into three intervals each in-

terval corresponding to a distinct form of I. D. C. The intervals are disjoint

except for the values 0 and 1. This seems to indicate that for these values of

the determinant there may correspond two forms of I. D. C. However it will be

shown later that for tho, value of det tij equal to 0 or I the transfer matrices
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corresponding to two different forms collapse into the same form.

Suppose we are given the transfer matrix of a four-port. The

determinant of some submatrix, say det T 1 1 , must lie in one of the three

disjoint intervals or else assume the values 0 or 1 because each sub-determinant

is real. See above, equations (40) to (56). Furthermore for a linear, lossless

reciprocal four-port it was shown earlier that

det Tl det T2 2 = 1- det T1

(63)
det 12 det T2 1

Therefore a subdeterminant of an arbitrary four-port must satisfy

the inequalities associated with one and only one form of I. D.C. A consequence

of this is that to every four-port there corresponds a unique form of I. D. C.

Once the form of coupler corresponding to a given four-port has

been determined, its coupling zoefficient a2 carl be 'found from one of the

following formulae:

0 det T I 1 form I and cL = det T1 1

2 det T1

0 = det T 0 form 2 anda = det T 1 - (64)
det T 1

2 1 1

< =

1 = det T < 00 form 3 and a 11 1det T 1

It should be observed that although the form of the I. D.C.

associated with arbitrary four-port is unique, the form of the representing

structure is not unique due to the arbitrary choice of a two-port.

Once a 2 has been determined the matrix t is known.

Henceforth a structure of the form of fig. 4 which represents a given

arbitrary four-port will be called the canonical form of the four-port
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(iii) Illustrations

As an illustration of the technique we shall try to find the

canonical forms of some rather special four-ports.

Consider the device shown below.

I 21 13

_ 14

where A and B are the transfer matrices of the indicated two-ports. The
transfer matrix of this device is easily seen to be of the form

0 B 1

From equation (59)

A = A.t 1 1 D (68)

0 = A t 12 B (69)

0 = C t2 1 D (70)

1
B = C tg2 B (71)

11
det A 1 det t I = 1

Now from equation (61) the I. D. C. associated with the given device appears to

be of either form 1 or form 3. But we know from (64) that if it is of form 1 then

2Z 1
= det A = 1

and if of form 3

cLZ _ 1
1det A

Also it is obvious that equations (63) are satisfied.
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Hence we find that the scattering transfer matrix of the 1. D. C.

associated with the given device assumes the form

1 0 0 0

0 1 0 0
0 0 1 0

0 0 1

for both type 1 and type 3

For the determination of the two-ports let A X , where X is an

arbitrary two-port. Since t 1 2 = 0 , B is also arbitrary Let B Y , where Y

is some arbitrary two-port. Then the two-ports are

A. X

13 Y
C B Y_

-1 y-

D X A

The canoiical form of fig. 5 is

/

X A' I

As our second illustration consider the following device.

The transfer matrix of this device is

BL 1 0
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We require

0 = A t1  D

A A t12 B

B C t21 D

0 C t 2 2 B

det0 = dett = 0

Hence the corresponding I. D. C. will be either of form 1 or 2

This implies a 2 = 0 and we see that both form 1 and form 2 collapse into

0 0 0
0 0 0 -j
j 0 0 0
0 -j 0 0

To determine the appropriate two ports let A X

then B = -j a X- A

C = Y Y arbitrary

D = -j a Y-1 BI

The canonical form is

r -3, t t x
j 0
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(iv) Canonical Form of Two Four-Ports.

Suppose two arbitrary four-ports are connected as shown below.

3 I

L 4 2 R41

The composite four-port defined by the dashed lines will be denoted

by A We now consider the problem of relating the coupling coefficient a of

the I. D. C associated with Ato the coupling coefficients a 1 z and a-, of the

I. D. C. ' s associated with L and R respectively.

We know that any four-port can be associated with just one of three

possible forms of I. D. C Consequently there are nine different combinations of

forms that can be associated with L and R For each of the nine possible cases

we shall evaluate a in the following four steps:

a) compute the transfer matrix T of A

b) evaluate det T 1 1

c) determine upper and lower limits for det T

d) awill assume one of the values of either equation

(64) or (65) or (66)

If L and R are put in their respective canonical forms Ais trans-

formed into

D A a_ _ _ _ _ _

2 R L 4
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where I and r are the I. D. C. s associated with L and R respectively. The

transfer matrix T of A can be given as

T = T 6 T 5 T 4 T 3 T 2 T I  (72)

where

T ]T 2 1 1 2'
T1 = ] T ~

T3B D21 
2

* -=7: I~: Tz_ = a
or

T = DrllaAIllD + Drl2 eCI2 ID DrllaAI l 2 B + Dr 1 2 eCI 2 2 B

TT

Br 2 laAI llD + Br 2 2 eCi2 1 D Br 2 1 aMl 1 2 B + Br 2 2 eCI 2 2 B

det T 1 1 = det (Dr 1 1 aAIllD + Dr1 2 eGI2 1D)
(73)

det (rll aA 1 1 + rlZ eCIz 1 )

f1 -1 -1 -1
=det (rll aM 1 1 l) (I + A1  a rll r 1 2 eGI 2 1 )

Now

det (I +K) -= det K +Tr K +1 (74)

where K is a 2 x 2 matrix.

*Define -I 1- - 1
II a rl r 1 2 eC1 = K .

Then

detT det det (I + K)
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(76) det (r I [det- ( r + T r I - l(aA) rreC

=det 1 11) 1 1 11 1 2 e 2 1r

For each of the nine possible combinations of forms of A and r,

equation (76) has been evaluated. The results of these computations appear in

table I.

The next step in our determination of a z is to determine the range

of values that det T 1 can assume for each of the nine cases.

Observe that in each entry of det T in table I the trace of a com-
plicated matrix product is required. We shall now discuss an abstract matrix M

that is assigned certain properties. This consideration will facilitate the evalua-

tion of the traces in question.

(v) Range of Tr M

Let M be a 2 x 2 matrix. Suppose there exists a scaler Xfor'which

MX = XX (77)

where

X
12X =[X]

The values of X which satisfy this equation are called the
characteristic values of M • If X is a characteristic value of Ma non-zero vector

X which satisfies ( O) is called a characteristic vector of M corresponding to the
characteristic value X For brevity we shall denote "characteristic value"

by c.v. For a 2 x 2 matrix M there are two c.v.ls.

Two cases arise:

case I . the c. v are distinct

case II the c v. are equal

Case I When the c. v of a Z x 2 matrix M are distinct then it can be demon-
strated that there exists a non-singular 2 x 2 matrix P such that

M = Pl P (78)
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where

(79)

and XI and X 2 are the c v. of M.

Case I; When the c.v. of M are not distinct, there exists a non-singular
matrix Q such that

M = Q Q (80)

where

whee 7or (81)

with X being a c.v. of M.

Consider a matrix M for which

det M 1 (82)

M1 + am = a (83)

and a matrix M2 for which

det M = -I (84)

M2 + aM2 = -(85)

We will now try to obtain bounds for the range of values that the traces of M
and M2 can assume

For M there are two cases to consider.1

Case I The c. v. of M are distinct.

0

M 1(86)

where 1 X2



31

Two matrices A and B are said to be similar if there exists a

non-singular matrix P such that

A = P BP (87)

It is apparent that

det A = det B (88)

Also it can be shown that

Tr A = Tr B (89)

Using this information it follows from (29) that

1
2 = -7 (90)

1

and

TrM 1 = = X + (91)

Since X 1 is a c.v. of M

M 1 X = X X (92)

Now

(M 1 X) + a (MI X) X X+ (M 1 +"aM) X = X +X (93)

(X 1 X)+ a (X IX) = X +oX

X 1  X + X = X

IX1 12 X+aX = Xax

ifX + 0 , then

1x11 = 1 (94)

For convenience denote X I by c j0 where 0 is some real number

TrM1 X + Cos01 - (95)

Tr M 2 cos 0 - Co <0 < C

0 real
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and

2 TrM 2 (96)

If X +X = 0

From (83) write

M\ 1+ , aM or (97)
+ -I -1

SinceM is similar to \4"

rM+ -1
Tr M I TrM (98)

Also since det M 1

Tr M = Tr M 1  (99)1 1k

Tr M + (Tr M1 ) (100)

We conclude

(Tr M 1) Tr 1  (101)

or Tr M is real.

From (9 1)

TrM = 
+ -

(102)

Since Tr MI is real
1 0((+ T I = + w × 4 0 (103)

This can be written as

(X 1- ") x 2l) =0 (104)

and for X f 4 1 it follows that

I = 1 (105)

or that X 1 is real

Therefore

1
TrM = ,+ x- xx rel II 1 x, 1
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For convenience denote Xl by C where is real and 0.

Tr M 1= c + c-0 = 2 cosh 4 (106)

2 <Tr M 1 < 00 (107)

We now summarize our results:

Case I The c. v. of M I are distinct

From (96) and (107)

- 2 :- Tr M < Co

Now we shall consider

CaseII The c. v. of M are equal
1

From (8 1)

TrM 1 =2 (109

where X is a c.v. ofMI . Since det M= I , it follows-that

= + (110)

Therefore M can be of the forms
1L1 1 D 2 or ]0 [t j (111)

and

TrM 1  2 (112)

However since we are interested primarily in the range of values

that Tr M 1 can assume we see that the information contained in (112) is already

contained in (108) •

We conclude that for a matrix M if

det M = (113)

MI+ aM I = a (114)
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then

-2 = Tr M 1 <co (115)

We now consider the matrix M 2 which has the properties that

detM -1 (116)

M2 + am-2 -a (117)

Case I. the c. v. of M 2 are distinct

X 0

From (88)

det M = X 1 X = -1 (118)

21

Since X I is a c. v of 10 2

M 2 X = XIX (120)

In a manner similar to (93 a) we find

lI X+aX = -x + a X (121)

which implies X + aX = 0 for otherewise there would be a contradiction.

Since
+ -1 -1

M = - aM a (122)

it can be shown in a manner analogous to that used in deriving (101) that

Tr M2 = (Tr M 2 ) (123)

or Tr M2 is real.
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Then

- ... - ) (124

or

'( x 1 - x (I + 0 0 (125)(Xlx l )( + Ii~i2) 1

from which we conclude

x1 for all X, 0 (126)

or that X is real
1

For convenience denote X I by c where 0 is real , - c <'E < co

Then

2 1 x 2 sinhe - O < e < 0 (127)
1

and conclude that

-co <Tr M 2 <co (128)
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(vi) Determination of the Form of I. D. C. Associated With the Composite

Structure

Using the results of the previous development it will be an easy
matter to determine the traces of each of the nine matrix products appearing

in table I.

Let us denote the matrix product corresponding to a type r and type I device
appearing in table I by

Mrp r= 1, 2, 3

1 1, 2, 3

For example M2 1  (,A)- pC cc 0

The product

(Mr) +C (Mrd (129)

and

det M rA (130)

for each of the nine cases has been evaluated and these results appear in

table II.

From (115) and (118) we find

-2 -5 TrM r < 0 (131)

when M.1 is any one of the matrices Mi 1 , M 2 2 , M 3 3 , M 3 2 , M 2 3

WhiftMri is anyone of M 2 1 , M 3 1 ' M 12 , M 13 we find

- oo <Tr MrH <oo (132)

Using these two inequalities and the expressions for det T 1I in table I
the range of det T 1 1 may be determined. The results of this effort are shown in
table III . Also listed in table-Ill is the possible form of the I. D. C. associated

wi.th Awhich has been determined through the use of equations (64) (65) and (66)

Observe that if r and I are each of type - three form then the form of the
coutpler associated with Ais certain to be of type - three.

The coupling coefficient az can then be written down at once

Qz (a Ia) (133)

(PI P2 )2 + I - 1 P2 Tr M333
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where
M33 (4LA). P4:c p• (134)

It will be useful at this time to consider a transformation of the structure

comprising fig. 10, which is interesting in its own right but which also has

special significance for our present discussion.

We shall now show that every device possessing the structure indicated

in fig. 4 can be transformed into the following system

It will be recalled that in our derivation of the canonical form of a given

four-port, one of the two-ports could be chosen arbitrarily.

Let L be a given four-port. In constructing the canonical form of L

suppose we choose A arbitrarily and let A = X . Assume that the I. D. C. , I ,

associated with L is known. Then the other three two-ports namely B, C, D. are

uniquely determined in terms of L and X or equivalently in terms of 1, L and X

From equation.(60) and corresponding to our new notation

C L2 2 (LIz)" X 1 ('22-) (135)

Similarly let e be the arbitrary two-port in the canonical form of the

four-port R. This time we shall choose
-:CI -l 1 -1 -1(16

= C; - 22 (1) X" L 12 (L 2 2 ) (136)

With this choice e becomes

C (r l) 1 r 12 122 (112) ' 1 X L1 2 (L2 2 )1 (R12) RIl (137).

From equation (72) it is seen that

T 4 T 3 = __---(138)
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becomes

T 4 T 3  = (139)

Therefore fig. 10 can be expressed as

and if we define

aX = Z (140)

then fig. Il obtains.

For certain forms of r and I the matrix product

(r11 )- 
1 (r 1 2 ) 122 (12))1 (141)

can be expressed in the form

kI (142)

where k is a scaler. One such case is when I and r are both of type-three. For

this case

k 2 (143)

where P. refers to r" and P 1 refers to "I".

Under these conditions Z can be expressed as

Z = X IkKX (144)

where

K LIZ (L22)
"1 (R 12)" R 1 1 (.145)



39

and k is some known constant. Thus we observe that Z is similar to the

matrix k K (see fig. 13)

This leads to an interesting result namely that if (141) can be expressed

as (14Z) then it is not possible to choose X such that Z will be of any desired

form.

Proof: Suppose it were possible to choose X so that Z could have any desired

form. In particular require that

Tr Z + TrkK (146)

But from (144)

Tr Z = TrkK (147)

which contradicts our assertion. The result follows immediately.

Observe that a simple choice for X is

X= I (148)

With this choice

z= . (149)

If M33 of equation (134) is computed under these conditions we find

33 (150)

-1Since Tra = Tra, (because det a= 1)

Tr M = Tra. (151)
33
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Equation (133) can then be written as

2
a (152)

2 + 1 - 1 32 Tr

We shall now consider some special values of a and the corresponding

condition that is imposed on Tr .

A useful relation is

1= (cL a2 ) (153)

which requires

Tra= 1 a (154)

Another special case is
Sa 2  (55

, : i(ISS)

which requires

Tr~ __- _ 2 (156)

This result has an intercting interpretation. When the c. v. of a are distinct

then a is similar to a matrix of the form

where X and are the two c. v. of L. If we define

p y (157)

Then X or X with
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When = 2 then 4is similar to a matrix of the form

GorE

Then fig. 13 assumes the special form.

where

I P2 (158)

and

jor L1 P' ~ (159)

for sorne matrix P



FT~ V F 1r-

b CL0'b'I~ 1'

I ~ I

CI I- dCo c
4JI ~ a - <:a

d++0 
'fnd

I --N0

N0
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TABLE III

c I C1 2  C13

det CII I det C12 det C = -1

l CII 11= 2 a i + - - C13 aC 1 3 =o

C21 C 2 2  C23

det C21 = .1 det C22 = 1 det C23 = 1

C21 + a CZ1 = -+ C2 + oC22 or c23+  Z3 a

C31. 032 3C '3 3

det C3 1 = -I det C32 ' I det C33 1

031 orC 3 1 = . 032 0032 = 033+ 0033 -

+ +,

TABLE IV

r 1 2 3

- ov<detT <I - o0<detT 1 1 <a, -co<detTT<CO

01,0 , 0,@. 0')0®, ®
- co <detTll <c) 0-o <detT1 1 < 1 < detT < o

O.OI, qO, OI @
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